Dependency Parsing and Semantic Role Labeling as a Single Task
نویسندگان
چکیده
We present a comparison between two systems for establishing syntactic and semantic dependencies: one that performs dependency parsing and semantic role labeling as a single task, and another that performs the two tasks in isolation. The systems are based on local memorybased classifiers predicting syntactic and semantic dependency relations between pairs of words. In a second global phase, the systems perform a deterministic ranking procedure in which the output of the local classifiers is combined per sentence into a dependency graph and semantic role labeling assignments for all predicates. The comparison shows that in the learning phase a joint approach produces better-scoring classifiers, while after the ranking phase the isolated approach produces the most accurate syntactic dependencies, while the joint approach yields the most accurate semantic role assignments.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملCMILLS: Adapting Semantic Role Labeling Features to Dependency Parsing
We describe a system for semantic role labeling adapted to a dependency parsing framework. Verb arguments are predicted over nodes in a dependency parse tree instead of nodes in a phrase-structure parse tree. Our system participated in SemEval-2015 shared Task 15, Subtask 1: CPA parsing and achieved an Fscore of 0.516. We adapted features from prior semantic role labeling work to the dependency...
متن کاملA Pipeline Approach for Syntactic and Semantic Dependency Parsing
This paper describes our system for syntactic and semantic dependency parsing to participate the shared task of CoNLL2008. We use a pipeline approach, in which syntactic dependency parsing, word sense disambiguation, and semantic role labeling are performed separately: Syntactic dependency parsing is performed by a tournament model with a support vector machine; word sense disambiguation is per...
متن کاملA Simple Generative Pipeline Approach to Dependency Parsing and Semantic Role Labeling
We describe our CoNLL 2009 Shared Task system in the present paper. The system includes three cascaded components: a generative dependency parser, a classifier for syntactic dependency labels and a semantic classifier. The experimental results show that the labeled macro F1 scores of our system on the joint task range from 43.50% (Chinese) to 57.95% (Czech), with an average of 51.07%.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009